Variable Selection via A Combination of the L0 and L1 Penalties
نویسندگان
چکیده
Variable selection is an important aspect of high-dimensional statistical modelling, particularly in regression and classification. In the regularization framework, various penalty functions are used to perform variable selection by putting relatively large penalties on small coefficients. The L1 penalty is a popular choice because of its convexity, but it produces biased estimates for the large coefficients. The L0 penalty is attractive for variable selection since it directly penalizes the number of non-zero coefficients. However, the optimization involved is discontinuous and nonconvex, and therefore it is very challenging to implement. Moreover, its solution may not be stable. In this article, we propose a new penalty which combines the L0 and L1 penalties. We implement this new penalty by developing a global optimization algorithm using Mixed Integer Programming (MIP). We compare this combined penalty with several other penalties via simulated examples as well as real applications. The results show that the new penalty outperforms both the L0 and L1 penalties in terms of variable selection while maintaining good prediction accuracy.
منابع مشابه
Rejoinder: One-step Sparse Estimates in Nonconcave Penalized Likelihood Models By
Most traditional variable selection criteria, such as the AIC and the BIC, are (or are asymptotically equivalent to) the penalized likelihood with the L0 penalty, namely, pλ(|β|) = 2λI (|β| = 0), and with appropriate values of λ (Fan and Li [7]). In general, the optimization of the L0-penalized likelihood function via exhaustive search over all subset models is an NP-hard computational problem....
متن کاملA risk ratio comparison of L0 and L1 penalized regression
In the past decade, there has been an explosion of interest in using l1-regularization in place of l0-regularization for feature selection. We present theoretical results showing that while l1-penalized linear regression never outperforms l0-regularization by more than a constant factor, in some cases using an l1 penalty is infinitely worse than using an l0 penalty. We also compare algorithms f...
متن کاملVariable and boundary selection for functional data via multiclass logistic regression modeling
l1 penalties such as the lasso provide solutions with some coefficients to be exactly zeros, which lead to variable selection in regression settings. They also can select variables which affect the classification by being applied to the logistic regression model. We focus on the form of l1 penalties in logistic regression models for functional data, especially in the case for classifying the fu...
متن کاملA Feasible Nonconvex Relaxation Approach to Feature Selection
Variable selection problems are typically addressed under a penalized optimization framework. Nonconvex penalties such as the minimax concave plus (MCP) and smoothly clipped absolute deviation (SCAD), have been demonstrated to have the properties of sparsity practically and theoretically. In this paper we propose a new nonconvex penalty that we call exponential-type penalty. The exponential-typ...
متن کاملNon-convex Penalties with Analytical Solutions for One-bit Compressive Sensing
One-bit measurements widely exist in the real world and can be used to recover sparse signals. This task is known as one-bit compressive sensing (1bit-CS). In this paper, we propose novel algorithms based on both convex and nonconvex sparsity-inducing penalties for robust 1bit-CS. We consider the dual problem, which has only one variable and provides a sufficient condition to verify whether a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007